ТЕХНИЧЕСКИЕ ЖИДКОСТИ

 

Охлаждающие жидкости

 

Часть тепла, выделяющегося в процессе сгорания топлива в двигателе, идёт на нагревание деталей двигателя. При этом из-за очень высоких температур стенок камеры сгорания теряется мощность двигателя, так как ухудшается наполнение цилиндров. Кроме того, ухудшаются условия смазывания, появляется детонация, калильное зажигание, усиленное нагаро- и лакообразование, повышенное трение и изнашивание деталей и т.д. Чтобы предотвратить перегрев деталей, их охлаждают. Система охлаждения двигателя в зависимости от его быстроходности и мощности отводит 15…35 % теплоты, образующейся при сгорании топлива. В бензиновых и газовых двигателях доля отводимой теплоты больше, чем в дизелях. Система охлаждения может быть воздушной или жидкостной. Наибольшее распространение на автомобильных двигателях получили жидкостные системы охлаждения.

В двигателях внутреннего сгорания в блоке и головке блока цилиндров между двойными стенками находится рубашка системы охлаждения, заполняемая жидкостью. Охлаждающая жидкость отводит тепло от стенок и отдаёт тепло воздуху, проходящему через радиатор. При этом охлаждающая жидкость циркулирует в замкнутом пространстве системы охлаждения, нагреваясь в блоке и головке цилиндров и охлаждаясь в радиаторе. Для обеспечения нормальной работы двигателя охлаждающая жидкость должна удовлетворять определённым требованиям.

Основными являются следующие требования:

Жидкостей удовлетворяющих всем этим условиям одновременно нет. Наибольшее распространение получили вода и антифризы.

Вода. Достоинства воды:

Недостатки воды:

В результате второго недостатка при низких температурах окружающего воздуха давление на стенки может возрасти до 250 МПа, что приводит к разрушению элементов системы охлаждения.

Для частичного устранения третьего недостатка систему охлаждения герметизируют, устанавливая на пробке радиатора два клапана: воздушный и паровой. Благодаря этому температура кипения воды в системе охлаждения несколько увеличивается (до 1190 С). Это, кроме того, позволяет увеличить температурный перепад в системе охлаждения и тем самым повысить эффективность теплообменных процессов. В результате можно снизить количество охлаждающей жидкости, уменьшить потребную поверхность радиатора, и сократить теплопотери в охлаждающую жидкость.

Накипью называют плотные отложения, образующиеся на нагретых стенках системы охлаждения. Накипь состоит из выделившихся из воды солей калия и магния, взвешенных продуктов коррозии и механических загрязнений. Шламом называют илоподобные частицы и элементы разрушения накипи минерального или органического происхождения, скапливающиеся в застойных полостях рубашки охлаждения и в нижнем бачке радиатора.

Образование отложений в системе охлаждения ухудшает теплоотдачу стенок рубашки системы охлаждения на 40 %, так как накипь имеет низкую теплопроводность, и уменьшает сечение трубок радиатора и всех проходных сечений. Как следствие двигатель перегревается, что ведёт к увеличению расхода топлива. Отложения в системе охлаждения образуются в виде накипи и шлама.

Соли кальция и магния придают воде свойство, называемое жёсткостью воды, которое измеряется  в мг-эквивалентах солей на 1 л воды. Жёсткость воды 1 мг-экв/л означает, что вы воде содержится 20,04 мг/л ионов кальция или 12,16 мг/л ионов магния. Мягкой вода считается при содержании в ней солей до 4 мг-экв/л (< 3 моль/м3), средней – при 8 мг-экв/л (3…6 моль/м3), жёсткой – при 8 мг-экв/л (> 6 моль/м3). Принято считать мягкой атмосферную воду (дождь, снег) мягкой, речную и озёрную – средней, колодезную и ключевую – жёсткой. Различают жёсткость временную, постоянную и общую.

Временная жёсткость характеризует содержание в воде в основном двух соединений – бикарбоната кальция Ca(HCO3)2 и бикарбоната магния Mg(HCO3)2.   Эти соли находятся в воде только при наличии в ней некоторого количества свободной углекислоты. При кипячении свободная углекислота удаляется, и соли временной жёсткости распадаются на карбонаты, выпадающие в осадок, и диоксид углерода, уходящий в атмосферу:

 

Ca(HCO3)2 CaCO3 + CO2 +H2O

Mg(HCO3)2 MgCO3 + CO2 +H2O

Таким образом, при кипячении бикарбонаты удаляются из воды, поэтому обусловленную их присутствием жёсткость называют временной, то есть устранимой. Перед заливкой воду можно прокипятить и заливать в радиатор после фильтрования. При отсутствии такой обработки соли временной жёсткости выпадают в накипь при первом же закипании в радиаторе. При этом происходит снижение временной жёсткости. Поэтому не следует часто менять воду в системе охлаждения.

Постоянная жёсткость определяется присутствием в воде более стойких солей: сульфаты (гипс CaSO4, MgSO4), хлориды (CaCl2, MgCl2), силикаты CaSiO3, Mg SiO3 и др. Эти соединения при кипячении не разлагаются  и не выпадают в осадок, если их концентрация не превосходит предел насыщения. Такие условия создаются при испарении части воды. Гипс, в отличии от большинства минеральных солей, обладает отрицательной растворимостью при повышении температуры растворимость гипса в воде уменьшается и его избыток выпадает в виде накипи. Присутствие гипса в накипи придаёт ей прочность и жёсткость.

Общей жёсткостью называют сумму временной и постоянной жёсткости.

Воду средней и высокой жёсткости перед использованием в системах охлаждения рекомендуется «умягчать».

Простейший способ умягчения – кипячение воды с последующей фильтрацией.

Другой способ – добавление соды и гашёной извести, что приводит к выпадению в осадок соединений кальция и магния, с последующей фильтрацией.

Наиболее эффективный способ- фильтрация воды через катионитовые фильтры. Катиониты – это вещества, способные вступать в ионообменную реакцию с растворёнными в воде солями. Они поглощают из воды ионы щелочноземельных элементов.

Снизить жёсткость воды можно так же путём её магнитной обработки. При прохождении воды через магнитное поле, растворённые в ней соли выделяются в виде хлопьев. Затем воду фильтруют.

Вещества, называемые антинакипинами, позволяют предотвратить образование накипи обработкой воды непосредственно в системе охлаждения. Их особенно необходимо добавлять в полевых условиях при отсутствии «мягкой» воды. Соли, находящиеся в воде, при добавлении антинакипинов, переходят в рыхлое состояние или удерживаются в виде перенасыщенного раствора. К антинакипинам относятся гексаметафосфат натрия (NaPO3)6, хромпик K2Cr2O7, ортофосфат натрия Na3PO4*12H2O и др.

Воду, предназначенную для системы охлаждения, необходимо предохранять от попадания в неё нефтепродуктов. Эти вещества уменьшают теплопроводность накипи и, следовательно, усугубляют её вред. Кроме того, они вызывают вспенивание воды и её выброс из системы охлаждения.

Из системы охлаждения шлам можно удалить многократной поочерёдной промывкой водой и продувкой сжатым воздухом. Для удаления накипи используют растворы веществ, обеспечивающих разрушение нерастворимых в воде солей накипи. Соли временной жёсткости удаляют кислыми растворами, постоянной – щелочными.

Все составы для удаления накипи, как и вода, оказывают коррозионное воздействие на металлы, особенно цветные.

Отложение накипи герметизирует систему охлаждения. Поэтому после её удаления, как правило, появляется течь в системе охлаждения.

При удалении накипи из системы охлаждения удаляют термостат, затем заливают раствор и выдерживают его в соответствии с инструкцией. После этого двигатель запускают и дают поработать 10…20 минут. После остановки двигателя раствор из него сливают и промывают систему охлаждения 2…3 раза водой. Для предотвращения коррозии промывку рекомендуется проводить 1 % раствором хромпика.

Антифризы. Антифризы необходимо заливать в систему охлаждения двигателя при температурах окружающего воздуха ниже 00 С, так как вода при низких температурах замерзает и в значительной степени увеличивает объём. В качестве антифризов используют смеси воды со спиртами, воды с глицерином, смеси углеводородов. Наибольшее распространение получили смеси на основе двухатомного спирта-этиленгликоля (СН2ОН-СН2ОН). Этиленгликоль – это прозрачная бесцветная вязкая жидкость без запаха. Кипит этиленгликоль при 1970 С, застывает – при – 11,50 С. Однако смеси этиленгликоля с водой застывают при более низких температурах. Меняя соотношение воды и этиленгликоля, можно получить смеси с температурой застывания от 0 до – 700 С. Понижение температуры замерзания водно-этиленгликолевого при увеличения количества воды объясняется появлением гидрата этиленгликоля, обладающего низкой температурой застывания. Минимальная температура замерзания раствора – 730 С при содержании 33 % воды. Дальнейшее увеличение количества воды ведёт к росту температуры замерзания.

Поскольку вода и этиленгликоль имеют разную плотность, а при их смешении плотность изменяется аддитивно, оказалось возможным по плотности предсказать температуру застывания антифриза.

В связи с тем, что этиленгликоль оказывает коррозионное действие на металлы, в состав антифризов вводят антикоррозионные присадки: 1г/л декстрина (для защиты алюминия, меди, свинцово-олового припоя), 2,5…3,5 г/л динатрийфосфата (для защиты стали, чугуна, латуни, меди). Для предотвращения вспенивания в состав антифриза вводят антипенные присадки.

При испарении водных растворов этиленгликоля пар содержат значительно больше воды, чем этиленгликоля. Поэтому в условиях эксплуатации от испарения теряется практически только вода.

Из-за большого коэффициента объёмного расширения, при нагревании до рабочей температуры объём этиленгликолевых жидкостей увеличивается на 6…8 %. При застывании объём образующейся кашеобразной массы увеличивается очень незначительно и размораживания системы охлаждения не происходит.

Характерные особенности этиленгликолевых антифризов:

1.  Увеличение на 6…8 % объёма при рабочей температуре.

2.  Теплопроводность, теплоёмкость и плотность антифризов при равных температурах примерно на 15 % ниже этих показателей для воды. Отсюда температурный режим двигателя, охлаждаемого антифризом, выше, чем при охлаждении водой. Например, температура поршня возрастает на 10…150 С. Это может привести к некоторому снижению мощности, экономичности и детонации при высоких температурах окружающего воздуха.

3.  Из-за более высокой температуры кипения и низкого давления насыщенных паров этиленгликоля по сравнению с водой при эксплуатации двигателя выкипает прежде всего вода. Поэтому при уменьшении жидкости в системе охлаждения из-за испарения необходимо добавлять воду.

4.  Антифризы по сравнению с водой обладают более высокой подвижностью и проницаемостью. Поэтому к системе охлаждения с антифризом предъявляются более высокие требования по герметичности.

5.  При замерзании антифризы образуют рыхлую массу с незначительным увеличением объёма. Поэтому механические повреждения систем охлаждения при замерзании антифриза исключены.

6.  Антифризы разрушают детали, изготовленные из некоторых сортов резины.

Наибольшее распространение получили низкозамерзающие жидкости 40, 65, а так же тосолы А-40 и А-65. В других литературных источниках их обозначают ОЖ-40, ОЖ-65.

Жидкость марки 40 представляет собой смесь 53…56 % этиленгликоля и 44…47% воды и имеет температуру застывание не выше – 400 С и плотность 1065…1085 кг/м3. Жидкость марки 65 содержит 64…66 % этиленгликоля и 34…36 % воды и имеет температуру застывание не выше – 650 С и плотность 1085…1100кг/м3.

Иногда кроме вышеназванных присадок в жидкости добавляют молибденовокислый натрий, что улучшает их антикоррозионные свойства в отношении цинковых и хромовых покрытий. Такие антифризы имеют индексы 40М и 60М.

Кроме того, выпускают «Тосол-А» (ОЖ-К), представляющий собой концентрированный этиленгликоль с присадками и плотностью 1100…1150 кг/м3. Пользоваться им можно только после разведения дистиллированной водой. Смесь «Тосола-А» и воды в соотношении 1:1 имеет температуру начала кристаллизации – 350 С.

Кроме «тосола» выпускают низкозамерзающую жидкость «Лена» с такими же характеристиками. «Тосол» имеет голубой цвет, «Лена» – жёлто-зелёный. Смешивать их при эксплуатации можно. Плотность низкозамерзающих жидкостей измеряют «гидрометром», показывающим плотность/температуру застывания.

С течением времени присадки в антифризе подвергаются распаду, вследствие чего качество антифриза ухудшается. Поэтому срок эксплуатации антифриза 2 года или 60 тыс. км пробега при интенсивной эксплуатации.

Этиленгликоль и его растворы токсичные вещества, при попадании в желудочно-кишечный тракт вызывают отравление с поражением центральной нервной системы и органов кровообращения.

Высококипящие охлаждающие жидкости. Для охлаждения высокофорсированных двигателей используют жидкости, с температурами кипения выше 1000 С. Такие жидкости состоят из смеси высокомолекулярных спиртов, гликолей и эфиров, выкипающих при температуре 110…1200 С. Их применение позволяет уменьшить теплопотери в систему охлаждения и интенсифицировать процесс теплопередачи, что приводит к уменьшению поверхности радиатора и мощности, затрачиваемой на привод насоса системы охлаждения. Основные свойства этих жидкостей приведены в таблице 21.

 

Таблица 21 – Свойства охлаждающих жидкостей  

 

Свойства жидкости

Температура застывания

не выше – 400 С

не выше – 600 С

Плотность при 200 С, кг/м3

Температура начала кипения, 0 С

Температура конца кипения, 0 С

Содержание механических примесей, %

не более

Вязкость, мм2/с:

- 350 С

- 300 С

1100

130…145

-

 

0,005


 

-

500

1050

130…140

195…210

 

0,005


 

410

320

Внешний вид

Прозрачная бесцветная или слабомутная желтоватая жидкость

 

 

Тормозные жидкости

 

Тормозные жидкости используют в тормозных системах с гидравлическим и пневмогидравлическим приводом.

Они должны обладать хорошими вязкостно-температурными и смазывающими свойствами, физической и химической стабильностью, а так же быть инертными по отношению к металлам, резиновым деталям гидропривода.

Жидкость в системе привода обычно имеет температуру окружающего воздуха. Однако в колёсных тормозных цилиндрах за счёт тепла, выделяемого при трении в тормозных механизмах, жидкость нагревается. Закипание жидкости не допускается, так как при этом нарушается главное условие работы привода – несжимаемость жидкости. Пары жидкости уменьшаются в объёме даже при небольших давлениях и поэтому, передаваемое по гидросистеме усилие не доходит до рабочих колёсных цилиндров. То же самое происходит при попадании воздуха в гидропривод. Часть системы вместо несжимаемой жидкости наполняется легко сжимаемым воздухом и педаль тормоза проваливается.

Ассортимент тормозных жидкостей. Тормозные жидкости выпускают на основе растительного масла (чаще всего касторового) или гликолей (двухатомных спиртов).

Касторовое масло имеет высокие смазывающие свойства и не вызывает набухания или размягчения резины и изготовленных из неё уплотнительных деталей. Однако высокая вязкость и относительно высокая температура застывания ( 160 С) исключает использование касторового масла в чистом виде. Поэтому тормозные жидкости готовят смешением касторового масла со спиртами – изопентанол, бутанол, этанол. Попадание воды в такие смеси приводит к снижению концентрации спирта, что вызывает расслоение жидкости. Такие смеси имеют низкую температуру застывания, однако уже при – 200 С происходит интенсивная кристаллизация составляющих касторового масла. Поэтому касторовые тормозные жидкости при температурах ниже – 200 С применять не рекомендуется.

Жидкости на основе гликолей и этилкарбитола по многим свойствам превосходят спиртокасторовые смеси. Они имеют хорошие низкотемпературные свойства (не замерзают при – 600 С), низкую испаряемость и высокую температуру вспышки. Все эти смеси нейтральны по отношению к резиновым немаслостойким деталям, так что могут применяться в тормозной системе автомобилей с обычными резиновыми уплотнителями. Эти жидкости нельзя смешивать со спиртокасторовыми жидкостями, так как происходит выпадение касторового масла. Применение жидкостей на основе гликолей и этилкарбитола обеспечивает работу гидравлического привода при температурах окружающего воздуха + 50…–  500 С. Все эти жидкости токсичны.

«Нева» – тормозная жидкость на основе 51…59 % этилкарбитола, 31…34 % диолов, 5 % эфиров и 13,5 % смесей гликолей и полигликолей, а также вязкостная и противокоррозионная присадки. Имеет цвет от светло-жёлтого до жёлтого, прозрачная. Она рекомендуется для легковых автомобилей. tкипения = 190…1950 С,

tприменения = +50…–500 С. Плотность при 200 С 1012…1015 кг/м3. Жидкость

огнеопасна, при попадании на кожу вызывает дерматит.

«Томь» – состоит из этилкарбитола, боратов, загущающих, антикоррозионных и противоизносных присадок. Имеет цвет от светло-жёлтого до жёлтого.


tкипения = 205…2200 С, tприменения = + 50…–  500 С. При tокружающего воздуха ниже – 400


С допускается добавка до 20 % этилового спирта.

«Роса» – тормозная жидкость на основе боросодерожащих олигомеров алкиленоксидов, в которую введены антиокислительная и антикоррозионная присадки. tкипения = 2600 С, tприменения = + 50…–  500 С. Имеет цвет от светло-жёлтого

до светло-коричневого. Жидкость «Роса ДОТ-4» превосходит «Росу» по эксплуатационным свойствам.

БСК – смесь равных частей касторового масла и бутанола (50х50%), окрашена в оранжево-красный цвет. В автомобилях ВАЗ не применяется. Рекомендуется использовать в зонах умеренного климата не ниже – 200 С из-за кристаллизации касторового масла, которая уже начинается при – 50 С. tкипения = 1150 С. Плотность при 200 С 890…9000 кг/м3. Жидкость обладает хорошими смазывающими свойствами, не вызывает большого набухания или размягчения уплотнительных деталей тормозной системы.

АСК – смесь равных частей касторового масла и с изопентенолом.

ЭСК – смесь равных частей касторового масла и с этанолом. Жидкости АСК и ЭСК рекомендуется использовать в том же температурном диапазоне, что и жидкость БСК. Эти жидкости могут давать при высоких температурах паровые пробки, так как имеют низкую температуру кипения (этанол кипит при 780 С).

ГТЖ-22 – жидкость на основе двухатомных спиртов.

ГТЖ-22 – так же жидкость на основе двухатомных спиртов с антикоррозионной и противоизносной присадками. Эти жидкости имеют зелёный цвет, застывают при температуре не выше – 650 С., ядовиты.

 

Амортизаторные жидкости

 

Амортизаторные жидкости используют в качестве жидкой среды в телескопических и рычажно-кулачковых амортизаторах автомобилей и других машин. Работа амортизатора основана на поглощении кинетической энергии колебания подрессоренных масс при протекании под давлением жидкости через узкие отверстия из одной полости в другую. Эти жидкости должны иметь пологую вязкостно-температурную характеристику, низкую температуру застывания (коротко: замёрзнет – амортизатор не работает – устойчивость движения и комфортабельность езды ухудшаются, но главное устойчивость, так как связано с безопасностью), необходимую вязкость.

Температура амортизаторных жидкостей может изменятся от температуры окружающего воздуха, например, – 500 С в северных районах, до + 120…1400 С при работе. Давление жидкости в амортизаторах достигает 8…12 МПа. Основное требование к амортизаторным жидкостям – оптимальная вязкость с минимальными изменениями во всём рабочем диапазоне температур.

АЖ-170 – смесь полиэтилсилоксанов с очищенным нефтяным маслом. Применяют в интервале температур – 60…+ 1300 С, tвспышки = 2450 С.

МГП-10 – смесь маловязкого трансформаторного масла и синтетической полиэтилсилоксановой жидкости, в которую для улучшения эксплуатационных свойств введены: осернённый кашалотовый жир, полимерная депрессорная, а также антиокислительная и антипенная присадки. Застывает жидкость при – 400 С,
tвспышки  = + 1500 С, tзастывания = - 400 С.

МГП-12. В состав её входят антиокислительные и противопенные присадки. Кинематическая вязкость при 500 С 12 мм2,с.

АЖ-12Т – фракция трансформаторного масла, загущена полиэтилсилоксановой жидкостью с добавлением противоизносной и антиокислительной присадок. Кинематическая вязкость при 500 C 10 мм2/с, tзастывания = - 550 С, что обеспечивает

мягкую работу амортизаторов в любое время года. Это прозрачная жидкость от светло-жёлтого до светло-коричневого цвета.

Широко используют заменители амортизаторных жидкостей:

АУ (МГ-22-А) и АУП (МГ-22-Б). Однако у них высокая температура застывания и неудовлетворительная вязкостно-температурная характеристика. Их вязкость быстро возрастает при понижении температуры окружающего воздуха. В связи с этим увеличивается жёсткость работы амортизаторов.

Смесь турбинного и трансформаторного масел в соотношении примерно 1:1. Однако эта смесь не в полной мере отвечает требованиям, так как имеет недостаточно хорошую вязкостно-температурную характеристику и высокую температуру застывания – 300 С.

 

Гидравлические масла

 

В некоторых вспомогательных механизмах автомобилей могут использоваться гидравлические масла. Они должны обладать хорошими смазывающими свойствами, химической стабильностью, не разлагаться и не расслаиваться, не разъедать цветные и чёрные металлы, резину и кожу.

Обозначение гидравлических масел производится в соответствии с ГОСТ 17479.3-85 «Обозначение нефтепродуктов. Масла гидравлические». Обозначение состоит из группы знаков, первая из которых обозначается буквами МГ (минеральное гидравлическое); вторая группа знаков обозначается цифрами и характеризует класс кинематической вязкости при 400 С (таблица 22); третья – обозначается буквами и указывает на принадлежность масла к группе по эксплуатационным свойствам (таблица 23).

Схема маркировки гидравлических масел представлена на рисунке 6.1.

Схема маркировки гидравлических масел по ГОСТ 17479.3–85

Рисунок 6.1 – Схема маркировки гидравлических масел по ГОСТ 17479.3–85

Пояснение к рисунку 6.1:
1 – назначение (МГ – минеральное гидравлическое);
2 – класс вязкости (средняя кинематическая вязкость в сантистоксах (сСт) при 40°С);
3 – эксплуатационная группа (А – без присадок, Б – с антикоррозионными и антиокислительными присадками, В – высокоочищенные масла с антикоррозионными, антиокислительными и противоизносными присадками).
Пример маркировки: МГ-15-В – МГ – минеральное гидравлическое масло, 15 – класс вязкости (средняя кинематическая вязкость в сантистоксах (сСт) при 40°С), В – группа масла по эксплуатационным свойствам (высокоочищенные масла с антикоррозионными, антиокислительными и противоизносными присадками).

 

Таблица 22 – Класс вязкости гидравлических масел

 

Класс вязкости

Кинематическая вязкость при 400 С, мм2

5

7

10

15

22

32

46

68

100

150

4,14…5,06

6,12…7,48

9,00…11.00

13,50…16,50

19,80…24,20

28,80…35,20

41,40…50,60

61,20…74,80

90,00…110,00

135,00…165,00

 

Наибольшее распространение получили следующие гидравлические масла:

Масло веретённое АУ (МГ-22-А) используют в различных гидравлических передачах, амортизаторах, гидроусилителях руля, для смазывания узлов и механизмов, работающих в условиях низких температур, а также в станках, работающих при частоте вращения до 160 мин-1.

Плотность масла 886…896 кг/м3, tзастывания = 450 С. Обеспечивает пуск

механизма при температуре выше 350 С. Кратковременный верхний предел температуры 900 С, оптимальная рабочая температура 50…600 С. Вырабатывается из низкозастывающих нефтей, подвергающихся очистке.

Масло гидравлическое АУП (МГ-22-Б) обладает хорошими противокоррозионными и антиокислительными свойствами, содержит до 2 % присадок. Обеспечивает пуск гидросистемы без предварительного прогрева при температурах выше – 350 С. Максимальная кратковременно допустимая температура масла при эксплуатации 1250 С, оптимальная рабочая температура 50…600 С,
t
застывания =450 С. Масло получают из низкозастывающих нефтей с добавлением антиокислительной, антикоррозионной, противоизносной и противопенной присадок.

Масло гидравлическое ВМГЗ (МГ-15-В) используют в средней полосе нашей страны в летний и зимний период в качестве рабочей жидкости для гидравлических систем авто-мототехники при температуре масла в системе от – 70 до +500 С. Максимальная кратковременно допустимая температура масла при эксплуатации 900 С, оптимальный температурный режим 35…400С, tзастывания= 600 С. Вырабатывается из низкозастывающих нефтей с добавление антиокислительной, антикоррозионной, противоизносной и противопенной присадок.

Таблица 23 – Группы гидравлических масел по эксплуатационным свойствам

Группа масла

Состав масла

Рекомендуемая область применения

А

Минеральные масла без присадок

Гидросистемы с шестерёночными, поршневыми насосами, работающие при давлении до 15*103 МПа и температуре масла в объёме до 800 С

 

Б

Минеральные масла с антиокислительными и антикоррозионными присадками

Гидросистемы с насосами всех типов, работающие при давлении до 25*103 МПа и температуре масла в объёме более 800 С.

 

В

Минеральные масла с антиокислительными, антикоррозионными и противоизносными присадками

Гидросистемы с насосами всех типов, работающие при давлении свыше 25*103 МПа и температуре масла в объёме более 900 С.

 

Масло МГ-30У получают из гидравлического масла МГ-30 (МГ-46-В), в которое добавляют 1,5 % присадки ДФ-11, и применяют в объёмных гидроприводах ведущих колёс сельскохозяйственной техники. Масло имеет высокие противоизносные, противозадирные, вязкостные свойства, которые не изменяются в процессе длительной работы на максимальных нагрузочных режимах.

Масло Р (МГ-22-В) для гидрообъёмных систем автомобилей производят на основе веретённого масла АУ, в которое добавляют моющую, противоизносную,  антиокислительную и противопенную присадки. Масло обеспечивает запуск систем при температурах выше – 350 С без специального подогрева. Максимальная кратковременно допустимая при эксплуатации температура масла 1250 С, оптимальная рабочая температура 50…600 С, tзастывания = 450 С.

Индустриальное масло И-ЛГ-А-15 (И-12А) применяют для гидроусилителя руля и других систем автомобилей в зимний период, а масло И-Г-А-32 (И-20А) – в летний период.

  Схема маркировки индустриальных масел представлена на рисунке 6.2.

Схема маркировки индустриальных масел по ГОСТ 17479.4–87

Рисунок 6.2 – Схема маркировки индустриальных масел по ГОСТ 17479.4–87

Пояснение к рисунку 6.2:
1 – назначение (И – индустриальное);
2 – эксплуатационная группа по назначению (Л – легконагруженные узлы, Г – гидравлические системы, Н – направляюще скольжения, Т – тяжелонагруженные узлы (зубчатые передачи));
3 – подгруппа по эксплуатационным свойствам (А – без присадок, В – масла А с антикоррозионными и антиокислительными присадками, С – масла В с противоизносными присадками, D – масла С с противозадирными присадками, Е – масла D с противоскачковыми присадками);
4 – класс вязкости (средняя кинематическая вязкость в сантистоксах (сСт) при 40°С).
Пример маркировки: И-ЛГ-А-15 – И – индустриальное масло, ЛГ – для легконагруженных механизмов и гидросистем (гидросистемы сельхозмашин, гидроусилители руля автомобилей, подшипники маломощных электродвигателей, шпиндели металлорежущих станков с частотой вращения до 10000 мин-1), А – без присадок, 15 – класс вязкости (средняя кинематическая вязкость в сантистоксах (сСт) при 40°С).

 

 

Пусковые жидкости

 

Пусковые свойства двигателей зависят от качества применяемых топлив и масел. Пуск двигателей при низких температурах облегчается при использовании бензинов с большим количеством лёгких фракций, дизельных топлив с высоким цетановым числом и масел с небольшой вязкостью при низких температурах. Однако даже очень хорошие топлива не могут обеспечить одновременно и пуск двигателя при низких температурах, и бесперебойную работу прогретого двигателя. В связи с этим широкое распространение получают специальные жидкости, с помощью которых осуществляется запуск двигателя при низких температурах.

В нашей стране применяют две жидкости: «Холод Д-40» для дизелей и «Арктика» для бензиновых двигателей.

Обязательным компонентом пусковых жидкостей является этиловый эфир С2Н5-О-С2Н5. У него низкая температура самовоспламенения, высокое давление насыщенных паров и широкие пределы воспламеняемости.

При пуске холодного двигателя повышается теплоотдача в стенки цилиндра и также вследствие других причин понижается температура воздуха в конце такта сжатия. В этом состоянии этиловый эфир позволяет обеспечить самовоспламенения горючей смеси при относительно невысоких температурах 190…2200 С. При этом наиболее эффективно применять этиловый эфир в чистом виде. Однако в этом случае происходит очень резкое повышение давления в цилиндре двигателя, что может привести к поломке деталей. Чтобы избежать этого содержание этилового эфира в пусковых жидкостях для дизелей обычно доводят до 60…75 %.

В бензиновых двигателях при пуске используют свойство этилового эфира воспламеняться в смеси с воздухом в широких концентрационных пределах. Это позволяет достичь воспламенения с помощью искры очень бедных смесей. Но содержание этилового эфира в пусковых жидкостях для бензиновых двигателей может быть меньшим, чем в жидкостях для дизелей.

При использовании пусковой жидкости в дизеле воспламенение начинается с воспламенения этилового эфира и в последнюю очередь воспламеняется само топливо. Для обеспечения постепенного и последовательного воспламенения в состав пусковых жидкостей вводят изопропилнитрат и смесь низкокипящих углеводородов.

Изопропилнитрат воспламеняется несколько позже этилового эфира, но раньше основного топлива. Смесь низко кипящих углеводородов, целиком испаряясь в цилиндре, воспламеняется несколько позже изопропилнитрата, но так же раньше основного топлива. Наличие такой последовательной цепочки обеспечивает хорошую подготовку основного топлива к воспламенению и началу видимого сгорания, что существенно снижает скорость нарастания давления. Оптимальное содержание изопропилнитрата и смеси низкокипящих углеводородов в жидкостях для дизелей составляет 15 %.

В жидкостях для бензиновых двигателей смесь низкокипящих углеводородов обеспечивает образование горючей смеси, способной воспламеняться от искры. Учитывая необходимость подготовки горючей смеси при довольно низких температурах, в жидкость для бензиновых двигателей добавляют смесь самых низкокипящих углеводородов в большем количестве, чем в жидкость для дизелей. Надёжной подготовке топливовоздушной смеси к воспламенению от искры способствует введение в состав жидкости для бензиновых двигателей небольшого количества изопропилнитрата.

Снижение износа трущихся деталей в первый период пуска двигателей достигается введением в состав пусковых жидкостей масла, содержащего противоизносные или противозадирные присадки. В дизелях в период пуска возникают более высокие нагрузки на трущиеся пары, чем в бензиновых двигателях. Исследованиями установлено, что для снижения пускового износа в составе дизельной пусковой жидкости должно быть не менее 10 % масла. Применение такой жидкости в бензиновых двигателях приводит к «замасливанию» свечей зажигания, к перебоям к появлению искры. В связи с этим в пусковых жидкостях для бензиновых двигателей содержание масла не должно превышать 2 %. Такое количество масла обеспечивает смазку трущихся деталей в первый период пуска менее напряжённого бензинового двигателя и в то же время не вызывает нарушений в работе свечей зажигания.

Кроме указанных основных компонентов в пусковые жидкости добавляют в небольшой концентрации некоторые присадки, улучшающие те или иные эксплуатационные свойства.

Применение пусковых жидкостей позволяет уменьшить минимальную частоту вращения коленчатого вала двигателя при пуске в несколько раз.

Пусковые жидкости «Арктика» и «Холод Д-40» позволяют запускать холодные двигатели без подогрева при температуре окружающего воздуха до – 400 С. При этом необходимо применять загущенные или маловязкие моторные масла и заряженный аккумулятор. При температурах воздуха ниже – 400 С двигатели можно пустить только после предварительного разогрева. Однако и в этом случае применение пусковых жидкостей позволяет сократить длительность разогрева двигателя и повысить надёжность его пуска.

Долгое время считали, что пуск холодного двигателя сопровождается резким увеличением износа трущихся деталей. Повышение износостойкости металлов и применение эффективных присадок к моторным маслам позволило резко уменьшить пусковые износы двигателей. В состав отечественных пусковых жидкостей «Арктика» и «Холод Д-40» входит масло с необходимыми присадками.

Таким образом, применение пусковых жидкостей является эффективным средством сокращения сроков пуска двигателей и повышения его надёжности при любых отрицательных температурах.

 

Таблица 24Состав отечественных пусковых жидкостей

 

Компонент

Содержание компонента, %

Арктика

Холод Д-40

Этиловый эфир

Изопропилнитрат

Смесь низкокипящих углеводородов

Масло

45…60

1…5

35…55

2

58…62

13…17

13…17

8…12

 

 

Hosted by uCoz